
Ghent University

Internship Digipolis Ghent

Solid Pods for IoT

Flor Sanders

Under the guidance of
Hans Fraiponts

Pieter-Jan Pauwels
prof. Jeroen Hoebeke

2020-2021

Contents

1 The Company 1

2 Internship Assignment 2

3 Technical Report 3
3.1 Introduction . 3
3.2 Motivation . 4
3.3 Architecture . 5

3.3.1 Sensor Network . 6
3.3.2 RML Mapper . 8
3.3.3 Solid Pod . 11
3.3.4 Dashboard . 12
3.3.5 Data Aggregator . 13
3.3.6 Data platform . 15

3.4 Evaluation . 16
3.4.1 Interoperability . 16
3.4.2 Access Control . 16
3.4.3 Performance . 17
3.4.4 Storage Efficiency . 17

3.5 Future work . 18
3.5.1 Sensor network and RML Mapper 18
3.5.2 Dashboard and Personalisation . 18
3.5.3 Solid User Experience . 18
3.5.4 API and Data Aggregator . 19
3.5.5 Data Platform . 19

3.6 Applications . 20
3.6.1 Data producer perspective . 20
3.6.2 Service provider perspective . 20

3.7 Conclusion . 21

4 Personal Evaluation 22

A Linked data and RDF A1

B SenML-om2 table of units A2

Chapter 1: The Company

Digipolis1 was founded in 2003 as an intercommunal collaboration between the cities of
Ghent and Antwerp and offers ICT services and support to both cities. Their goal is to
improve the cities for all their inhabitants as a place to live and work by making use of
technology.

Besides offering ICT support for daily operations to the personnel of all city de-
partments, Digipolis Ghent also occupies itself with the exploration of more advanced
technologies which have the potential of improving life and work in the city. Examples of
such projects are:

• Smart Cities + Open Data Reuse (SCORE)2

• Traffic Management as a Service (TMaaS)3

• City of Things (CoT) databroker4

From 2021 onwards, Digipolis will split as a company and the Ghent and Antwerp
branches will go their own way. Digipolis Ghent, where this internship took place, will
continue as an autonomous communal company (nl: autonoom gemeentebedrijf) under
the name of District095.

Figure 1.1 shows the structure under which Digipolis Ghent operates as a company.
Each of the operational branches shown in the diagram is further subdivided into oper-
ational units or cells. My internship was guided by Hans Fraiponts from the solutions
group in the coordination branch as well as Pieter-Jan Pauwels from the strategy and
foresight team in the management branch.

Figure 1.1: Organogram of Digipolis Ghent [nl]

1https://www.digipolis.be/
2https://northsearegion.eu/score/
3https://drive.tmaas.eu/
4https://stad.gent/sites/default/files/media/documents/Vlaio%20City%20Of%20Things%

20project%20DataBroker%20eindrapport_versie_12032020.pdf
5https://stad.gent/nl/smart-city/nieuws-evenementen/stad-gent-zet-digitale-versnelling-met-district09

1

https://www.digipolis.be/
https://northsearegion.eu/score/
https://drive.tmaas.eu/
https://stad.gent/sites/default/files/media/documents/Vlaio%20City%20Of%20Things%20project%20DataBroker%20eindrapport_versie_12032020.pdf
https://stad.gent/sites/default/files/media/documents/Vlaio%20City%20Of%20Things%20project%20DataBroker%20eindrapport_versie_12032020.pdf
https://stad.gent/nl/smart-city/nieuws-evenementen/stad-gent-zet-digitale-versnelling-met-district09

Chapter 2: Internship Assignment

Solid1, abbreviated from social linked data, is an upcoming technology that strives to
change the way data is used on the web. The goal of the project is to give control of the
personal data produced by using web applications back to the user. Such an evolution
might have big implications for how people interact with the web and is thus a topic of
interest at Digipolis.

For this internship, I was asked to help the company explore this new technology by
continuing the work started during my bachelor’s thesis: research how Solid might be
used in IoT applications. After considering different possibilities, we decided to continue
this research by building a second proof-of-concept (PoC) implementation with the goal
of learning the mechanisms of saving, sharing and publishing sensor data making use of
Solid Pods.

Additionally, I was instructed to investigate Solid in the current context of data pro-
tection laws and open data charters and envision some interesting use cases through which
Solid could improve how the city and its citizens handle IoT data.

Aside from this report, the deliverables produced for this internship contain:

• the open-sourced code base along with documentation for installation and usage2.

• a video with a practical demonstration of the PoC3.

• a final presentation of the project performed for the people at Digipolis, the city of
Ghent and Ghent University.

The internship took place during the six weeks between August third and September
eleventh of 2020. Due to the ongoing corona pandemic, it was only possible to work at
the office part time with the rest of the work performed from home.

1https://solidproject.org/
2https://github.com/lab9k/Solid-Pods-For-IoT
3https://florsanders.be/vid/Solid_Pods_for_IoT_Demonstration.mp4

2

https://solidproject.org/
https://github.com/lab9k/Solid-Pods-For-IoT
https://florsanders.be/vid/Solid_Pods_for_IoT_Demonstration.mp4

Chapter 3: Technical Report

3.1 Introduction

Solid is a project founded in 2016 under the guidance of Tim Berners-Lee, the inventor of
the world wide web. The technology produced in the Solid project strives to enable users
to read, write and share data on the web without being dependent on closed platforms to
do so. The core idea of Solid is that an individual or organisation would have a personal
online data store (Pod) where personal data can be saved under the user’s control, though
without losing the advantages offered by the web.

The Internet of Things (IoT) describes a system where devices can communicate with
each other over a network without the need for human intervention. This field has known
tremendous growth since the coinage of the term by Kevin Ashton in 1999. It is generally
agreed however that the truly interesting applications envisioned for the technology, such
as a City of Things (CoT) or the Industrial Internet of Things (IIOT), are being held
back by the fragmentation that dominates the space.

The solution for this fragmentation is being worked on from two sides. On the one
hand there are the bottom-up initiatives to uniformise communication methods between
devices across the industry by leveraging open standards. An example of this is the recent
Connected Home over IP project1 promoted by Amazon, Apple, Google and the Zigbee
Alliance.

On the other hand there is the top-down approach taken by the semantic web com-
munity in the form of the Web Of Things (WoT)2 and the Web of Data (WoD)3 which
proposes to use concepts from linked data (LD) and the Resource Description Framework
(RDF) for the description of IoT data and systems to counter the existing fragmentation.

The work done during this internship at Digipolis Ghent builds upon my bachelor’s
thesis at Ghent University in which sensor data was extracted from an IoT network using
the Lightweight Machine to Machine (LwM2M) protocol and saved to a Solid Pod [1].
Here we will investigate whether Solid could offer a midpoint where the two movements
mentioned above could meet, which is necessary in order to make a uniform solution for
interoperable IoT applications possible.

1https://www.connectedhomeip.com/
2https://www.w3.org/WoT/
3https://www.w3.org/2013/data/

3

https://www.connectedhomeip.com/
https://www.w3.org/WoT/
https://www.w3.org/2013/data/

3.2 Motivation

In the introduction (3.1) two movements are given that strive to solve the problem of
fragmentation in the field of IoT, working from different sides. It is claimed that Solid
might be a good candidate for unifying these two strategies. In this section the reasons
for this claim are given.

The recent movement towards open data sparked by charters at communal4 as well
as international level5 have caused governments and companies alike to adopt linked data
and RDF as standards for publishing their data.

While semantic web technologies have long been a niche due to the complexity of the
field, this trend is changing thanks to the increase in popularity mentioned above. The
authors in [2] identify the application of machine learning algorithms to linked data as an
emerging area of research. In short, the future of linked data looks promising.

In previous works, one strategy of incorporating IoT devices in a linked data Platform
(LDP) is to run this platform right on top of them [3][4]. As concluded in [5] however,
this strategy doesn’t take the limited resources and constrained links into account, which
are fundamental properties of wireless IoT devices. The direct implementation of a LDP
onto these devices would have drastic consequences for their battery life.

Another strategy is to stick to the communication standards designed with these con-
strained links in mind and make the conversion to RDF at a later stage. Such conversions
have been studied in literature already, e.g. [6] proposes a conversion from Sensor Mea-
surement List (SenML) format to RDF. Usually though, this conversion is performed on
large data sets as a final step before publication, rather than on a real-time stream of
incoming data [7].

The premise of Solid is to offer a personal data store with full LDP capabilities, where
the user stays in control. Using the conversion mechanisms mentioned above, the data
produced by constrained wireless devices could be saved to a Solid Pod in real time. These
data could then be processed by different applications, shared with third parties or even
published publicly through the Solid platform.

The strategy proposed here offers the advantage of using the principles of linked data in
IoT applications close to the data source, while not having to cannibalise the constrained
nature of the devices used in the process.

In conclusion, the use of Solid in IoT applications strikes a good balance between
the advantages and disadvantages that come with the two movements, implementing
a semantic Web of Things and uniformising the communication standards across the
industry, which work to alleviate the problem of fragmentation in IoT.

4https://smart.flanders.be/open-data-charter/
5https://opendatacharter.net/

4

https://smart.flanders.be/open-data-charter/
https://opendatacharter.net/

3.3 Architecture

In what follows an overview of the PoC built to investigate how well the reality of the
situation corresponds with the expectations outlined in the previous section (3.2) is given.
The code base for the implementation itself is made publicly available under an AGPL-3.0
license6.

Sensor
Network

RML
Mapper Solid Pod

Sensor
Network

RML
Mapper Solid Pod

Data Aggregator Data Platform

SenML

SenML

RDF

RDF

Client Dashboard

ACL

HTTP

RDF

RDF

HTTP

Location A

Location B

HTTP

Figure 3.1: Diagram overview of the implemented system

Figure 3.1 shows a schematic overview of the PoC. In the following sections the func-
tion and design of the components in this diagram are discussed.

6https://github.com/lab9k/Solid-Pods-For-IoT

5

https://github.com/lab9k/Solid-Pods-For-IoT

3.3.1 Sensor Network

The schematic in figure 3.1 contains two sensor networks at two different locations, the
office and a home environment. These sensor networks act as the data producers in the
system and each contain two distinct sensors.

Both sensors are developed using NodeMCU 1.0 development boards, based on the
ESP8266 microchip which contains a 32-bit micro-controller, a full Transfer Control Proto-
col/Internet Protocol (TCP/IP) stack as well as Wi-Fi 2.4GHz capabilities, standardised
by the Institute of Electrical and Electronics Engineers (IEEE) in the IEEE 802.11 b/g/n
specifications [8]. They can be programmed using the Arduino IDE7 to realise the desired
functionality.

One sensor uses a DHT11 device to measure the temperature (range: 0°C to 50°C,
precision: 2°C) and relative humidity (range: 20%RH to 95%RH, precision: 5%RH),
connected to the NodeMCU as described in [9].

The other sensor employs a light dependent resistor (LDR) in a voltage divider con-
figuration as shown in figure 3.2. The output voltage is given by:

Vout =
R

RLDR + R
VCC (3.1)

Since, for the LDR, the logarithm of the conductance is inversely proportional to the
logarithm of the illuminance on its surface, this circuit will result in an output voltage
which rises for increasing light intensity [10], hence it can be used as a device to measure
this property. Since no calibration has been done however, we will simply report the
measurement as a fraction with respect to its maximum value VCC .

VCC

RLDR-lux

RVout

A0

Figure 3.2: LDR in voltage divider

The sensor devices publish their measurements over the Message Queuing Telemetry
Transport (MQTT) protocol in the Sensor Measurement List (SenML) format using its
JSON serialisation.

7https://www.arduino.cc/en/Main/Software

6

https://www.arduino.cc/en/Main/Software

MQTT is a lightweight bi-directional protocol for machine-to-machine (M2M) com-
munication over TCP/IP. Thanks to its publish-subscribe architecture, only one agent in
the system (the broker) needs to be available at all times, while the other agents (the
clients) can be online only intermittently. This makes the protocol ideal for constrained
low-power wireless IoT devices that communicate over IP [11]. For the MQTT broker,
we opted for an instance of the open source Eclipse Mosquitto8 program.

SenML is a proposed standard from the Internet Engineering Task Force (IETF) for
representing sensor measurements in an efficient manner with support for JSON, CBOR,
XML and EXI as serialisation formats. It is meant to be used as a media format to
exchange messages between constrained devices [12].

Listings 1 and 2 give examples of messages sent by the two sensors in SenML’s JSON
serialisation.

[

{

'bn': 'urn:dev:mac:807d3afffe367a58_',

'bt': '1599488174',

'n': 'temperature',

't': '30',

'u': 'Cel',

'v': '24'

},

{

'n': 'humidity',

't': '30',

'u': '\%RH',

'v': '42'

}

]

Listing 1: Temperature and humidity measurement in SenML’s JSON serialisation

[

{

'bn': 'urn:dev:mac:b4e62dfffe703f4d_',

'bt': '1599488159',

'n': 'light',

't': '30',

'v': '79'

}

]

Listing 2: Light intensity measurement in SenML’s JSON serialisation

Figure 3.3 shows the circuits described above built on a breadboard.

8https://mosquitto.org/

7

https://mosquitto.org/

Figure 3.3: Sensor hardware based on NodeMCU development boards

3.3.2 RML Mapper

The RML mapper developed for this project is based on the one used in previous work
[1][5], though some important improvements and changes were made, the latter mainly
due to the use of a different protocol stack: MQTT and SenML rather than LwM2M. It
consists of 3 parts: The receiver, the translator and the saver.

The receiver extracts the data from the sensor network. It comprises an MQTT
client which subscribes at the MQTT broker to the topic used by the sensors for message
publication. It parses the incoming SenML messages as JSON, reconstructs the data
contained in the records and passes it down to the translator.

The translator accepts the incoming data from the receiver, applies a pre-processing
setp and translates the data in RDF format. Appendix A gives an introduction to linked
data and its description in RDF.

Since LwM2M uses its own specific data model, the previously built translator made
use of a corresponding specialised ontology to make mapping as straight-forward as pos-
sible. The use of SenML as a message format however prevents us from reusing this
previous implementation. Instead RML files for translation of SenML data to two differ-
ent ontologies were developed:

• the Semantic Sensor Network (SSN) ontology9, a World Wide Web Consortium
(W3C) recommendation.

• the Smart appliances reference (Saref) ontology10, developed by the Netherlands
Organisation for Applied Scientific Research (TNO).

The core structure for describing a sensor and its measurements in both the SSN and
Saref ontologies are shown in figures 3.4 and 3.5 respectively. Both ontologies share a lot
of the same characteristics. They are both built around a Device or Sensor which makes
Observations or Measurements, they both use or support the ontology of units measure
(om2)11 to describe units and measured quantities.

9https://www.w3.org/TR/vocab-ssn/
10https://ontology.tno.nl/saref/
11http://www.ontology-of-units-of-measure.org/resource/om-2/

8

https://www.w3.org/TR/vocab-ssn/
https://ontology.tno.nl/saref/
http://www.ontology-of-units-of-measure.org/resource/om-2/

These similarities are not a coincidence however. Saref is the result of research meant
to improve integration of and interoperability between different existing standards [13].
Efforts have even been made in developing (partial) semantic translations between both
ontologies [14].

Figure 3.4: SSN ontology structure, source: [15, 4.3.1]

Figure 3.5: Saref ontology structure, adapted from: [16]

9

The mapping from SenML data to RDF and more specifically SSN has been covered
in literature [6][7]. In this project a similar, though not identical approach is taken. In
essence, it comes down to:

1. Converting the time data from unix time (e.g. 1599488159) to the DateTime format
of the XML Schema Definition (XSD) (e.g. 2020-09-07T14:16:29Z) [17].

2. Map the list of supported units in SenML [12, 12.1] to equivalents found in the om2
ontology. A table containing such a mapping is given in appendix B.

3. Describe the sensor and its data using the pattern defined by the ontology.

The first two steps are implemented as a pre-processing action after which the data
is passed on to an RML mapper which performs the third step: to actually translate the
data. Listings 3 and 4 show the result of the mapping of the data from listings 1 and 2
for SSN and Saref respectively, serialised in the Terse RDF Triple Language (Turtle) [18].

@prefix sosa: <http://www.w3.org/ns/sosa/> .

@prefix om2: <http://www.ontology-of-units-of-measure.org/resource/om-2/> .

@prefix xml: <http://www.w3.org/2001/XMLSchema#> .

<dev:mac:807d3afffe367a58_temperature> a sosa:Sensor ;

sosa:madeObservation <uuid:94ebf374-ba40-4d5c-9743-d742f61d9260> ;

sosa:observes om2:Temperature .

<uuid:94ebf374-ba40-4d5c-9743-d742f61d9260> a sosa:Observation ;

sosa:hasResult <uuid:94ebf374-ba40-4d5c-9743-d742f61d9260_result> ;

sosa:resultTime "2020-09-07T14:16:44Z"^^xml:dateTime .

<uuid:94ebf374-ba40-4d5c-9743-d742f61d9260_result> om2:hasNumericalValue "24"^^xml:float ;

om2:hasUnit om2:degreeCelsius ;

a om2:Measure .

<dev:mac:807d3afffe367a58_humidity> a sosa:Sensor ;

sosa:madeObservation <uuid:d4d03b48-03be-4f88-a39a-4507318047e9> ;

sosa:observers om2:RelativeHumidity .

<uuid:d4d03b48-03be-4f88-a39a-4507318047e9> a sosa:Observation ;

sosa:hasResult <uuid:d4d03b48-03be-4f88-a39a-4507318047e9_result> ;

sosa:resultTime "2020-09-07T14:16:44Z"^^xml:dateTime .

<uuid:d4d03b48-03be-4f88-a39a-4507318047e9_result> om2:hasNumericalValue "42"^^xml:float ;

om2:hasUnit om2:percent ;

a om2:Measure .

<dev:mac:b4e62dfffe703f4d_light> a sosa:Sensor ;

sosa:madeObservation <uuid:4b44fbbe-b3f8-4504-8eb0-bc1f3473a56e> .

<uuid:4b44fbbe-b3f8-4504-8eb0-bc1f3473a56e> a sosa:Observation ;

sosa:hasResult <uuid:4b44fbbe-b3f8-4504-8eb0-bc1f3473a56e_result> ;

sosa:resultTime "2020-09-07T14:16:29Z"^^xml:dateTime .

<uuid:4b44fbbe-b3f8-4504-8eb0-bc1f3473a56e_result> om2:hasNumericalValue "79"^^xml:float ;

a om2:Measure .

Listing 3: RDF graph describing the data in listings 1 and 2 using the SSN ontology.

10

@prefix saref: <https://w3id.org/saref#> .

@prefix om2: <http://www.ontology-of-units-of-measure.org/resource/om-2/> .

@prefix xml: <http://www.w3.org/2001/XMLSchema#> .

<dev:mac:807d3afffe367a58_temperature> a saref:Device ;

saref:makesMeasurement <uuid:94ebf374-ba40-4d5c-9743-d742f61d9260> ;

saref:measuresProperty om2:Temperature .

<uuid:94ebf374-ba40-4d5c-9743-d742f61d9260> a saref:Measurement ;

saref:hasTimeStamp "2020-09-07T14:16:44Z"^^xml:dateTime ;

saref:hasValue "24"^^xml:float ;

saref:isMeasuredIn om2:degreeCelsius .

<dev:mac:807d3afffe367a58_humidity> a saref:Device ;

saref:makesMeasurement <uuid:d4d03b48-03be-4f88-a39a-4507318047e9> ;

saref:measuresProperty om2:RelativeHumidity .

<uuid:d4d03b48-03be-4f88-a39a-4507318047e9> a saref:Measurement ;

saref:hasTimeStamp "2020-09-07T14:16:44Z"^^xml:dateTime ;

saref:hasValue "42"^^xml:float ;

saref:isMeasuredIn om2:percent .

<dev:mac:b4e62dfffe703f4d_light> a saref:Device ;

saref:makesMeasurement <uuid:4b44fbbe-b3f8-4504-8eb0-bc1f3473a56e> .

<uuid:4b44fbbe-b3f8-4504-8eb0-bc1f3473a56e> a saref:Measurement ;

saref:hasTimeStamp "2020-09-07T14:16:29Z"^^xml:dateTime ;

saref:hasValue "79"^^xml:float .

Listing 4: RDF graph describing the data in listings 1 and 2 using the Saref ontology.

In practice the messages for each sensor get translated separately and saved to local
RDF graphs. These updates get batched locally and sent out to update the data in the
Pod at fixed intervals to avoid overloading the Solid server with PATCH requests.

3.3.3 Solid Pod

Each of the sensor networks has its own Solid Pod to which the corresponding RML
Mapper saves the measurements coming from the sensor network.

At the time of writing only one implementation of a Solid server is publicly available,
Node Solid Server (NSS)12, though a new open-source implementation, Community Solid
Server (CSS)13, is in development and Inrupt has an Enterprise-grade Solid Server (ESS)14

in beta.
Due to time constraints we used Pods from a provider rather than a self-hosted system.

For the sensor network in the home environment solid.community was used and in the
office we opted for inrupt.net.

For illustrative purposes, we configured the RML mapper for the office environment
to save data using the SSN ontology and the one for the home environment to use the
Saref ontology.

12https://github.com/solid/node-solid-server
13https://github.com/solid/community-server
14https://inrupt.com/products/enterprise-solid-server

11

https://solid.community
https://inrupt.net
https://github.com/solid/node-solid-server
https://github.com/solid/community-server
https://inrupt.com/products/enterprise-solid-server

3.3.4 Dashboard

The web server shown in the centre of figure 3.1 hosts a dashboard application for visu-
alising the IoT data saved in the Pods and managing which parties have access to them.
Figure 3.6 shows screenshots of the dashboard’s components.

(a) Drop-down menu to select file

(b) Description and location fields

(c) Sharing fields

(d) Interactive graph showing sensor data

Figure 3.6: Screenshots of the dashboard

The different components of the dashboard provide the following functionality:

(a) Since the IoT data is published in different files for different sensor, a drop-down list
is available to select which one the dashboard should show for inspection, sharing
and editing.

(b) As listings 3 and 4 indicate, after the mapping there is little data available yet about
the properties of the sensor: its brand, location, measurement range, precision, etc.
are missing from the graph. Such missing information could easily be provided by
the application that manages these devices. As a proxy to this solution we added two
fields through which the sensor’s location and description can be changed manually.

12

(c) Two ways of sharing the file were added to the dashboard as well. In the upper
field one can enter a WebId with whom they want to share the data. The lower
button grants read access to the file to a preconfigured agent representing the data
aggregator. It also makes a call to an Application Programming Interface (API) to
let the aggregator know it has access to a new resource.

(d) Finally, an interactive graph visualising the data saved in the Pod is also included.
It offers compatibility for reading data described using either the SSN or Saref
ontology.

3.3.5 Data Aggregator

The data aggregator contains two distinct components:

• A Representational State Transfer (REST) API which acts as a compatibility layer
for Solid interactions.

• A pipeline for data fetching, merging, processing and saving.

3.3.5.1 REST API

Since currently the capability of interacting with Solid Pods is nonexistent in most data
processing platforms a REST API, which acts as a compatibility layer, was developed.

It keeps track of the resources it has access to and exposes these files through GET
requests to clients. The API supports the following requests:

• GET /v1/localfiles or /v1/solidfiles: Returns a list of files (hosted locally or on a
collection of Solid Pods) the data aggregator has access to.

• GET /v1/localfiles/filename.ttl or /v1/solidfiles/filename.ttl: Returns the contents
of the file (hosted locally or on a Solid Pod) with name filename.ttl in Turtle format.

• PUT /v1/solidfiles/filename.ttl: Adds the file to the list of resources the aggregator
has access to. The body should contain the URL where the file is stored.

• DELETE /v1/solidfiles/filename.ttl: Removes the file from the list of resources the
aggregator has access to. The body should contain the URL where the file is stored.

13

3.3.5.2 Pipeline

The data aggregator’s pipeline was built using LinkedPipes ETL15. This platform offers a
graphical interface to build pipelines for the processing of linked data. The pipeline built
in this project is shown in figure 3.7.

Figure 3.7: Pipeline for processing the IoT data stored in our Solid Pods.

The upper row of blocks is responsible for interacting with the API to fetch the list
of files available to the data aggregator and subsequently fetching the data in those files.
The blocks in the lower row serve the purpose of merging, processing and saving the data.
More specifically:

• PARSE TO RDF: Takes the contents from the fetched files and interprets them as
Turtle to form actual RDF graphs which are ready for processing.

• MERGE GRAPHS: Merges the RDF graphs into a single one.

• SPARQL SAREF ->SSN: Uses a SPARQL Query Language for RDF (SPARQL)
CONSTRUCT query to translate the data described using the Saref ontology to
SSN. This way the final graph can be queried without having to take the presence
of multiple ontologies into account.

• RDF TO FILE TURTLE: Serialise the merged and converted RDF graph to a Turtle
file.

• SAVE IN VIRTUOSO: Sends the graph to our data platform of choice, Virtuoso.

15https://etl.linkedpipes.com/

14

https://etl.linkedpipes.com/

3.3.6 Data platform

For the data platform we opted for Virtuoso16, developed by Openlink Software. This
platform is dominant in applications concerning the Linked Open Data Cloud thanks to
its support for handling linked data graphs in a scaleable manner.

Virtuoso exposes a SPARQL endpoint through which the data in its triple store can
be queried and delivered in different formats. This endpoint offers a way of publishing
the data for analysis or use in applications. Listings 5 and 6 give examples of SPARQL
queries that can be used to retrieve data from the graph.

prefix sosa: <http://www.w3.org/ns/sosa/>

prefix om2: <http://www.ontology-of-units-of-measure.org/resource/om-2/>

prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

prefix terms: <http://purl.org/dc/terms/>

SELECT ?name ?description ?property ?location

WHERE {

?name a sosa:Sensor .

OPTIONAL{?name terms:description ?description .}

OPTIONAL{?name sosa:observes ?property .}

OPTIONAL{?name geo:lat_long ?location .}

}

Listing 5: SPARQL query to retrieve a list of sensors with their general properties.

prefix sosa: <http://www.w3.org/ns/sosa/>

prefix om2: <http://www.ontology-of-units-of-measure.org/resource/om-2/>

SELECT ?name ?time ?value ?unit ?property

WHERE {

BIND(om2:Temperature AS ?property)

?name a sosa:Sensor .

?name sosa:observes ?property .

?name sosa:madeObservation ?uuid .

?uuid a sosa:Observation .

?uuid sosa:resultTime ?time .

?uuid sosa:hasResult ?uuidresult .

?uuidresult a om2:Measure .

OPTIONAL{?uuidresult om2:hasUnit ?unit .}

?uuidresult om2:hasNumericalValue ?value .

FILTER (str(?time) > "2020-09-06T06:00:00Z")

FILTER (str(?time) < "2020-09-06T06:01:00Z")

}

Listing 6: SPARQL query to retrieve a list of temperature measurements between 6:00AM
and 6:01AM on September 6th 2020.

16https://virtuoso.openlinksw.com/

15

https://virtuoso.openlinksw.com/

3.4 Evaluation

Section 3.2 mentions the possible advantages of using Solid Pods for IoT applications.
This section takes a critical look at the developed implementation and evaluates the
extent to which these advantages were realised.

3.4.1 Interoperability

One of the main premises of Solid is the interoperability between apps thanks to the use
of common data structures described by the ontologies used in linked data. While our
application makes use of RDF to describe the sensor data, this is not in itself enough to
guarantee that other apps will know what to do with it. The main reason for this is that
no description is given about what data our graph is guaranteed to contain, only which
ontologies it uses to describe that data.

The author of [19] proposes a solution to this problem by making use of shapes, which
describe specific views of data chunks. Shapes allow an application to verify whether
given data conforms to a predefined data structure and could even be used for processes
akin to content-negotiation in web APIs.

Another solution could be the use of RDF Data Cubes, which is a system to publish
multi-dimensional data sets in RDF format and allows you to describe the structure of a
data set alongside the data itself [20].

3.4.2 Access Control

Solid not only promises full control over personal data, but does so without throwing
away the advantages offered by the web. This requires a well thought-out mechanism to
manage who can access what data and in what way. Solid makes use of the Web Access
Control (WAC) mechanism [21], which defines Access Control List (ACL) resources to
describe Read, Write, Append and Control access to documents. An example of an ACL
adding read permission to an agent is provided in listing 7.

@prefix acl: <http://www.w3.org/ns/auth/acl#>.

<#owner> a acl:Authorization;

acl:agent </profile/card#me>;

acl:accessTo <./urn_dev_mac_807d3afffe367a58_humidity.ttl>;

acl:mode acl:Read, acl:Write, acl:Control.

<#Read-0> a acl:Authorization;

acl:agent <https://flordigipolis.solidweb.org/profile/card#me>;

acl:accessTo <./urn_dev_mac_807d3afffe367a58_humidity.ttl>;

acl:mode acl:Read.

Listing 7: ACL for the humidity resource after granting read access to an agent.

At the time of writing the most granular level of access control possible on Solid is
on files, not the data within them. This implies that if you only want to share a subset
of data (e.g. measurements between certain dates) with a third party, this has to split of
into a separate file, which is quite cumbersome.

This is currently an open problem in the Solid community with proposed solutions
such as content-addressable RDF [22].

16

A better approach might be to save only the most recent data in its raw form and keep
historical records for derived data on which some processing has already been performed
in line with the trend towards edge computing [23]. This pre-processed data chunks could
then be shared with third parties rather than the whole raw data set.

3.4.3 Performance

It’s well known that the performance aspects of web applications such as loading times
are important factors of the perceived practicality of these applications.

To evaluate this property for the current Solid implementation, a log was kept of delays
between the PATCH requests sent by the RML Mapper and the 200 OK response by the
Solid server. Figure 3.8 shows these measurements in relation to the file size to which the
new data had to be appended for both Pod providers (both running NSS v5.5.1).

0 100 200 300 400 500 600 700 800 900
File size [kB]

0

5

10

15

20

25

30

35

40

45

De
la
y
[s
]

Measurements
Averaged measurements
Trendline

(a) Solid Community Server

0 100 200 300 400 500 600 700 800 900
File size [kB]

0

5

10

15

20

25

30

35

40

45

De
la
y
[s
]

Measurements
Averaged measurements
Trendline

(b) Inrupt Server

Figure 3.8: Server delay for PATCH request on different file sizes.

The graph in figure 3.8a shows a linear relation between file size of the total database
and loading time, with an increase of 33.74ms

kB . The results in figure 3.8b are less consis-
tent, but show a similar trend, with a delay trendline that increases with 18.85ms

kB . These
results are, mildly put, concerning, since for the Solid Community Server a file size of a
mere 600 kB corresponds to a delay of almost twenty seconds.

Since we did not carry out these tests on a self-hosted instance of the NSS and no other
implementations of a Solid server are publicly available as of yet, there is no telling if the
cause lies in a lack of server resources, the way NSS is implemented or the mechanisms
defined in the Solid specifications.

3.4.4 Storage Efficiency

Incorporating the context of the data into the data itself, as is done in RDF with the use
of ontologies, has its benefits but also its costs.

After translating the SenML messages from listings 1 and 2 to RDF Turtle format,
as showng in listings 3 and 4, we obtain payload sizes of 1409 bytes and 1044 bytes
respectively for SSN and Saref. In comparison, the SenML messages themselves only
contain 240 bytes worth of content. This corresponds to respective increases of total file
sizes by factors 5.87 and 4.35. This aspect certainly has to be improved upon in order to
produce a scaleable solution.

17

3.5 Future work

This section gives an overview of the extensions, changes and improvements that could
be made to this system to improve its scalability and adoptability.

3.5.1 Sensor network and RML Mapper

In this project the sensor network and RML Mapper are considered as separate entities,
but it doesn’t have to be this way. Ideally, Solid would be incorporated as storage mech-
anism in existing IoT platforms, though in the meantime this concept could be evaluated
by adding Solid as a persistance method in an open platform like OpenHAB17.

Alternatively, for IoT platforms with traditional storage methods the mapper could
be kept as a middleware service running alongside a Solid Pod, which interfaces with the
platform’s API and publishes the collected data to the Pod.

3.5.2 Dashboard and Personalisation

Since the IoT platforms mentioned in the previous section generally offer a user interface
(UI) alongside it, a separate user interface wouldn’t be strictly necessary. This doesn’t
mean however that this couldn’t be advantageous. The separation of data and applications
offered by Solid opens up the possibility of different apps using the same data. A good
example of this could be the use of different dashboards depending on the user’s comfort
level with technology, give beginners a clean and simple UI and offer power users as much
configurability as they can handle.

3.5.3 Solid User Experience

Besides the UI for the applications, the user experience (UX) when using Solid is an
important aspect that could be improved upon.

Rather than treating the Solid Pod as network attached storage (NAS) device that
also happens to support application data, one could imagine a situation in which it is used
as a platform to enable services equivalent to or even surpassing those currently running
on closed systems such as those offered by Apple, Google, Amazon, etc.

Since all the data concerning a certain individual would be saved in a central platform,
it should be possible to make use of these by means of edge computing to offer context-
based and personalised information and services through interaction points such as smart
displays and voice assistants [23]. Many pieces still need to come together however before
such a system becomes feasible.

More practically, in the short term it would be beneficial to improve the experience of
setting up a local instance of a Solid Pod with the possibility of encrypted backups in the
cloud for the case that something goes wrong. This would allow application developers to
more easily experiment with the different functionalities Solid has to offer since they’re
less likely to be limited by bottlenecks such as total storage capacity and bandwidth
limitations.

17https://www.openhab.org/

18

https://www.openhab.org/

3.5.4 API and Data Aggregator

Between the development of the API covered in section 3.3.5.1 and the writing on this
report a tool called Walder for setting up web APIs on top of decentralised knowledge
graphs such as Solid Pods was published18. The use of this tool would allow a more
flexible and thorough approach for building compatibility layers between Solid Pods and
data aggregation or processing tools.

Of course support for Solid Pods immediately baked into these tools would be even
better. The discovery of resources available to them could happen through accessing the
public type registration of user profiles, but this level of adoption still requires a large
amount of effort.

3.5.5 Data Platform

While this PoC makes a first effort in employing Solid Pods in a distributed network for
IoT data publication, it hasn’t been applied to an actual application yet. Assuming the
upcoming Solid server implementations solve the performance issues mentioned in 3.4.3,
the possibility for this is not that far of.

Good project candidates within Digipolis would be the IoT and CoT projects in which
a large amount of data from different sources is already being used, such as the TMaaS
project19 or the IoT registry20.

18https://github.com/KNowledgeOnWebScale/walder
19https://drive.tmaas.eu/
20https://iot.lab9k.gent/

19

https://github.com/KNowledgeOnWebScale/walder
https://drive.tmaas.eu/
https://iot.lab9k.gent/

3.6 Applications

The current online environment treats customers as data producers to the companies they
use (free) services from. With the adoption of IoT devices, the amount of data that can be
collected not only grows but also transfers from being purely online to revealing aspects
of the physical world.

This section will discuss how the use of Solid in (IoT) applications can be beneficial
to both parties involved: the data producer and the service provider.

3.6.1 Data producer perspective

As shown by the recent trends on the web, customers are willing to share their data with
third parties if they get something in return. Currently the most frequent situation is
the following: service providers offer their products to customers at a very low cost, often
even for free, and in return these companies enjoy a monopoly on the data produced by
using these services [24].

By making use of Solid this deal could be renegotiated. Since the data are saved in
an interoperable fashion, multiple applications could compete for the function of data
platform. Some of these might opt for a more classical payment model in which no data
sharing is required, while others could keep the current model of data in exchange for
services. Another possibility is even to have companies which offer no services whatsoever
but set up smart contracts on the blockchain to give monetary compensation for the data
provided [25]. What the end result will look like is unknown and might differ strongly
between different groups of users, but Solid offers a technological framework with the
flexibility to put such different models to the test.

An additional benefit of the possibility to have multiple applications using the same
data is the aspect of personalisation. Different companies can create separate products
that cater to different groups of users (e.g. elderly vs. youth, professional vs. personal
use) while at the core still reusing the same data.

Furthermore, these access mechanisms could make it significantly easier for grassroots
organisations, living labs and citizen science groups to start and manage projects in which
citizens collaborate to collect data that can freely be used for scientific research, or increase
the transparency about the data sharing process in more classical research setups.

3.6.2 Service provider perspective

While the renegotiation of the data sharing deal mentioned above would mean that com-
panies will lose their monopolistic grip over the data produced by their products, they
will also enjoy some advantages caused by the adoption of Solid.

First of all, the loss of this monopolistic grip would mean these companies suddenly
could have access to data produced by other applications beside their own, provided the
user is compelled in some way to give them access to those data.

Additionally, with the recent rise of data protection laws such as the EU’s Gen-
eral Data Protection Regulation (GDPR)21 and the California Consumer Privacy Act
(CCPA)22 the do’s and don’ts of handling personal data have become increasingly com-
plicated and this trend will only get worse as governments around the world develop their
own regulations.

21https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
22https://oag.ca.gov/privacy/ccpa

20

https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
https://oag.ca.gov/privacy/ccpa

Since with Solid the control over the data and who has access to them lies with
the user, the applications produced using this technology are almost guaranteed to be
inherently compliant with above laws and regulations.

Finally, the fact that Solid users can know exactly which data gets shared with whom
and at what times drastically increases the transparency of this data sharing process. As
a result it is likely that users will be more trusting with their data and actually share it
willingly.

3.7 Conclusion

The introduction (3.1) introduces two movements, the semantic Web of Things (WoT)
and the uniformisation of communication standards, both striving to solve the problem of
fragmentation in the field of IoT, and identifies Solid as a possible midpoint where these
initiatives could join, which is further motivated in section 3.2.

In section 3.6 we consider the Solid technology in its socio-economic context and
explore the advantages its adoption for applications might result in from the perspective
of both the individual as a data producer and the companies providing services.

Section 3.3 gives an overview of the PoC built to evaluate the current state of affairs
and in sections 3.4 and 3.5 the limitations of this system as well as future work that could
be done to improve upon these limitations as well as to make it a more viable solution is
discussed.

In conclusion, Solid is an interesting project since it has quite large implications for
the organisation of the world wide web and by extension the Internet of Things. Currently
however, the technology is not ready yet for prime time and it still has a long way to go
before it’s truly suitable for mass adoption.

21

Chapter 4: Personal Evaluation

As an electrical and electronics engineering student, the topics I usually occupy myself
with are those of circuit analysis, hardware design and low-level software development,
such as for embedded systems. In this internship however, I was able to explore these
systems on a whole other level of abstraction and learn more about a range of new topics
such as data models, the semantic web and the development of RESTful APIs.

On a personal level, this internship served as my first contact to the industrial sphere
of engineering. I got to take a look behind the screens of a company, Digipolis Ghent,
that occupies itself with a lot of varying tasks and subjects, from the maintenance and
support of of-the-shelf IT solutions to high-tech project-based work in collaboration with
international partners such as the SCORE project.

Through the daily scrum sessions with Hans Fraiponts, my internship mentor, as well
as Jef Willems and Tim Van Achte from the foresight group, I learnt a lot about what it
takes to organise a project in order to complete it successfully, while taking many aspects
such as budget, timing and security into account.

For above reasons I can only conclude this internship has been an excellent learning
experience for me and I am hence grateful to have had the opportunity to do this.

22

Bibliography

[1] A. Bomhals, K. Hens, T. Paelman, and F. Sanders, “Iot en solid: Een
applicatie voorprivégegevens met lwm2m,” UGent, 2020. [Online]. Available:
https://www.florsanders.be/files/Solid en IoT verslag.pdf

[2] P. Bloem and G. K. D. Vries, “Machine learning on linked data, a position paper,”
09 2014.

[3] D. Le-Phuoc and M. Hauswirth, “Linked Data for Internet of Everything,” in
Integration, Interconnection, and Interoperability of IoT Systems, R. Gravina, C. E.
Palau, M. Manso, A. Liotta, and G. Fortino, Eds. Cham: Springer International
Publishing, 2018, pp. 129–148, series Title: Internet of Things. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-61300-0 7

[4] G. Loseto, S. Ieva, F. Gramegna, M. Ruta, F. Scioscia, and E. D. Sciascio, “Linked
Data (in resourceless) Platforms: a mapping for Constrained Application Protocol,”
in The Semantic Web - ISWC 2016. Springer International Publishing, 2016.

[5] B. Moons, F. Sanders, T. Paelman, and J. Hoebeke, “Decentralized linked open data
in constrained wireless sensor networks,” Ghent University, unpublished, 2020.

[6] X. Su, H. Zhang, J. Riekki, A. Keränen, J. K. Nurminen, and L. Du, “Connecting
iot sensors to knowledge-based systems by transforming senml to rdf,” Procedia
Computer Science, vol. 32, pp. 215 – 222, 2014, the 5th International Conference on
Ambient Systems, Networks and Technologies (ANT-2014), the 4th International
Conference on Sustainable Energy Information Technology (SEIT-2014). [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1877050914006176

[7] V. Kothandapani and K. Sathiyamurthy, A Framework for Semantic Annotation and
Mapping of Sensor Data Streams Based on Multiple Linear Regression: Methods and
Protocols, 01 2019, pp. 211–222.

[8] ESP8266EX Datasheet, Espressif Systems, 2 2018, v5.8. [Online]. Avail-
able: https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex
datasheet en.pdf

[9] DHT11, DHT22 and AM2302 Sensors, Adafruit, 9 2020. [Online]. Available:
https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf

[10] CdS Photoconductive Cells, Lida Optical&Electronic Co. [Online]. Available:
https://pi.gate.ac.uk/pages/airpi-files/PD0001.pdf

[11] MQTT Version 5.0, Oasis, 3 2019. [Online]. Available: https://docs.oasis-open.org/
mqtt/mqtt/v5.0/mqtt-v5.0.pdf

23

https://www.florsanders.be/files/Solid_en_IoT_verslag.pdf
http://link.springer.com/10.1007/978-3-319-61300-0_7
http://www.sciencedirect.com/science/article/pii/S1877050914006176
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf
https://pi.gate.ac.uk/pages/airpi-files/PD0001.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

[12] C. Jennings, Z. Shelby, J. Arkko, A. Keranen, and C. Bormann. (2018) Sensor
measurement lists (senml). IETF. [Online]. Available: https://tools.ietf.org/html/
rfc8428

[13] L. Daniele, F. den Hartog, and J. Roes, “Study on semantic assets for smart appli-
ances interoperability : D-s4: Final report,” 2015.

[14] J. Moreira, L. Daniele, L. Ferreira Pires, K. Wasielewska, P. Szmeja, W. Pawlowski,
M. Ganzha, and M. Paprzycki, “Towards iot platforms’ integration: Semantic trans-
lations between w3c ssn and etsi saref,” 09 2017.

[15] Semantic sensor network ontology. W3C. [Online]. Available: https://www.w3.org/
TR/vocab-ssn/#Observations-overview

[16] saref:device. TNO. [Online]. Available: https://ontology.tno.nl/saref/saref Device.
html

[17] S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, N. Mendelsohn, D. Beech,
and M. Maloney. (2012) W3c xml schema definition language (xsd). W3C. [Online].
Available: https://www.w3.org/TR/xmlschema11-1/

[18] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers. (2014) Rdf 1.1
turtle. W3C. [Online]. Available: https://www.w3.org/TR/turtle/

[19] R. Verborgh. (2020) Shaping linked data apps. [Online]. Available: https:
//ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/

[20] D. Reynolds, R. Cyganiak, and J. Tennison. (2014) The rdf data cube vocabulary.
[Online]. Available: https://www.w3.org/TR/vocab-data-cube/

[21] D. Zagidulin, M. de Jong, K. Kjernsmo, R. Verborgh et al. (2020) Web access control
(wac). Solid. [Online]. Available: https://github.com/solid/web-access-control-spec

[22] pukkamustard. (2020) Content-addressable rdf. [Online]. Available: https:
//openengiadina.net/papers/content-addressable-rdf.html

[23] J. Ren, Y. Pan, A. Goscinski, and R. A. Beyah, “Edge computing for the internet of
things,” IEEE Network, vol. 32, no. 1, pp. 6–7, Jan 2018.

[24] M. Falch, A. Henten, R. Tadayoni, and I. Windekilde, “Business models in social
networking,” 01 2009.

[25] A. Le-Tuan, D. Hingu, M. Hauswirth, and D. Le-Phuoc, “Incorporating blockchain
into rdf store at the lightweight edge devices,” in Semantic Systems. The Power of AI
and Knowledge Graphs, M. Acosta, P. Cudré-Mauroux, M. Maleshkova, T. Pellegrini,
H. Sack, and Y. Sure-Vetter, Eds. Cham: Springer International Publishing, 2019,
pp. 369–375.

[26] Linked data. W3C. [Online]. Available: https://www.w3.org/standards/
semanticweb/data

[27] G. Klyne, J. J. Carroll, and B. McBride. Rdf 1.1 concepts and abstract syntax.
[Online]. Available: https://www.w3.org/TR/rdf11-concepts/

24

https://tools.ietf.org/html/rfc8428
https://tools.ietf.org/html/rfc8428
https://www.w3.org/TR/vocab-ssn/#Observations-overview
https://www.w3.org/TR/vocab-ssn/#Observations-overview
https://ontology.tno.nl/saref/saref_Device.html
https://ontology.tno.nl/saref/saref_Device.html
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/turtle/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://www.w3.org/TR/vocab-data-cube/
https://github.com/solid/web-access-control-spec
https://openengiadina.net/papers/content-addressable-rdf.html
https://openengiadina.net/papers/content-addressable-rdf.html
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/TR/rdf11-concepts/

Appendix A: Linked data and RDF

Linked data is the data structure powering the sematic web. It makes it possible to reason
about decentralised data by relating it to each other, i.e. linking it [26].

The Resource Description Framework (RDF) is a standardised format for linked data,
in which all data sets are described as a directed graph. The nodes (IRIs, literals or
blanks) are interrelated by means of predicates, which point from subject to object. The
combination (subject, predicate, object) is called a triple [27].

Figure A.1: Components of an RDF graph, source: [27, Fig.1].

To describe data in RDF one makes use of ontologies, which act as a lexicon describing
which subjects, predicates and objects are available and how they can be combined. An
example is the Friend Of A Friend (FOAF) ontology1, which can be used to describe
properties of and relations between people. Below we give an example of a valid RDF
triple.

@base <https://www.example.com/> .

@prefix foaf: <https://xmlns.com/foaf/0.1/> .

<JohnDoe> foaf:knows <JaneDoe> .

In this example <JohnDoe> is the subject, <JaneDoe> the object and foaf:knows the
predicate. The syntax used to describe above triple is the Terse RDF Triple Language
(Turtle), which is a serialisation format offering a compact and easily comprehensible
notation of RDF graphs.

While the concepts of linked data en RDF might seem unnecessarily complicated
at first, its properties of incorporating the context within the data and allowing data
structures more complicated than a hierarchical tree are highly advantageous when it
comes to the ability for machines to process it.

1http://xmlns.com/foaf/spec/

A1

http://xmlns.com/foaf/spec/

Appendix B: SenML-om2 table of units

@prefix om2: <http://www.ontology-of-units-of-measure.org/resource/om-2/ >.

Symbol Description OM2 Unit OM2 Quantity

m meter om2:metre om2:Length

kg kilogram om2:kilogram om2:Mass

g gram om2:gram om2:Mass

s second om2:second-Time om2:Time

A ampere om2:ampere om2:ElectricCurrent

K kelvin om2:kelvin om2:Temperature

cd candela om2:candela om2:LuminousIntensity

mol mole om2:mole om2:AmountOfSubstance

Hz hertz om2:hertz om2:Frequency

rad radian om2:radian om2:Angle

sr steradian om2:steradian om2:SolidAngle

N newton om2:newton om2:Force

Pa pascal om2:pascal om2:Pressure

J joule om2:joule om2:Energy

W watt om2:watt om2:Power

C coulomb om2:coulomb om2:ElectricCharge

V volt om2:volt om2:ElectricPotential

F farad om2:farad om2:Capacitance

Ohm ohm om2:ohm om2:ElectricalResistance

S siemens om2:siemens om2:ElectricalConductance

Wb weber om2:weber om2:MagneticFlux

T tesla om2:tesla om2:MagneticFluxDensity

H henry om2:henry om2:Inductance

Cel degrees Celsius om2:degreeCelsius om2:Temperature

lm lumen om2:lumen om2:LuminousFlux

lx lux om2:lux om2:Illuminance

Bq becquerel om2:becquerel om2:Frequency

Gy gray om2:gray om2:AbsorbedDose

Sv sievert om2:sievert om2:AbsorbedDose

kat katal om2:katal om2:CatalyticActivity

m2 square meter (area) om2:squareMetre om2:Area

m3 cubic meter (volume) om2:cubicMetre om2:Volume

l liter (volume) om2:litre om2:Volume

m/s meter per second (velocity) om2:metrePerSecond-Time om2:Velocity

m/s2 meter per square second (acceleration) om2:metrePerSecond-TimeSquared om2:Acceleration

m3/s cubic meter per second (flow rate) om2:cubicMetrePerSecond-Time om2:VolumetricFlowRate

l/s liter per second (flow rate) undefined undefined

W/m2 watt per square meter (irradiance) om2:wattPerSquareMetre om2:Irradiance

cd/m2 candela per square meter (luminance) om2:candelaPerSquareMetre om2:Luminance

bit bit (information content) om2:bit om2:InformationCapacity

bit/s bit per second (data rate) om2:bitPerSecond-Time om2:SymbolRate

lat degrees latitude undefined undefined

lon degrees longitude undefined undefined

pH pH value (acidity; logarithmic quantity) undefined om2:Acidity

dB decibel (logarithmic quantity) undefined om2:Magnitude

dBW decibel relative to 1 W (power level) undefined undefined

Bspl bel (sound pressure level; logarithmic quantity) undefined undefined

count 1 (counter value) om2:one om2:Number

/ 1 (ratio, e.g., value of a switch) om2:one om2:Ratio

% 1 (ratio, e.g., value of a switch) om2:one om2:Ratio

%RH percentage (relative humidity) om2:percent om2:RelativeHumidity

%EL percentage (remaining battery energy level) om2:percent om2:Percentage

EL seconds (remaining battery energy level) om2:second-Time om2:Time

1/s 1 per second (event rate) om2:reciprocalSecond-Time om2:Frequency

1/min 1 per minute (event rate, ”rpm”) undefined undefined

beat/min 1 per minute (heart rate in beats per minute) undefined undefined

beats 1 (cumulative number of heart beats) om2:one om2:Number

S/m siemens per meter (conductivity) om2:siemensPerMetre om2:ElectricalConductivity

A2

	The Company
	Internship Assignment
	Technical Report
	Introduction
	Motivation
	Architecture
	Sensor Network
	RML Mapper
	Solid Pod
	Dashboard
	Data Aggregator
	Data platform

	Evaluation
	Interoperability
	Access Control
	Performance
	Storage Efficiency

	Future work
	Sensor network and RML Mapper
	Dashboard and Personalisation
	Solid User Experience
	API and Data Aggregator
	Data Platform

	Applications
	Data producer perspective
	Service provider perspective

	Conclusion

	Personal Evaluation
	Linked data and RDF
	SenML-om2 table of units

